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A second-order modelling technique is used to investigate the behaviour of homo- 
geneous scalar turbulence. Special attention is paid to the influence of timescale ratio 
on scalar flux relaxation. We develop a model for the scalar flux equation in a 
homogeneous turbulence and consider both a scalar field without mean-scalar 
gradients and one with constant mean-scalar gradients based on Sirivat & Warhaft 
(1981) experiments. Good agreement with experiment in all the cases is obtained. 

1. Introduction 
I n  this paper we study a homogeneous passive scalar field in a decaying, 

homogeneous turbulence without mean velocity using a second-order modelling 
technique. We consider both a scalar field without mean-scalar gradients and one with 
constant mean-scalar gradients based on Sirivat & Warhaft’s (1981) experiments. 

Newman, Launder & Lumley (1981) studied these two fundamental flows. Their 
paper presented a model for the scalar dissipation equation eo = K(O,  , O,, )  and 
pointed out the importance of considering varying the timescale ratio, 
r = (q2 /e ) / ( (02 ) /eo ) ,  from flow to flow. The main contribution of this paper lies in 
the provision of a model for the return to isotropy in the scalar flux equation. This 
model is also strongly dependent on the timescale ratio. Sirivat & Warhaft’s 
experiments provide data for various timescale ratios and therefore are very useful 
for testing various closure models. 

We calculate three flows without mean-temperature gradients and seven flows with 
constant mean-temperature gradients. The good agreement with experiment gives 
us confidence that our model can provide a basis for models describing more complex 
scalar flows. 

2. A model for the scalar flux equation in homogeneous turbulence 
Preliminaries 

The exact transport equations describing the evolution of the intensity of scalar 
fluctuations in a homogeneous turbulent flow without mean velocity and buoyancy 
may be written as (Lumley 1978) 
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where 8 is the mean-scalar distribution, ( ) stands for averaging, E@ = K < e , , e , , )  the 
dissipation rate of +(e2), E = V ( U ~ ~ ~ U ~ ~ , )  the dissipation rate of k2, q2 = (u6ui) 
and b, = (uiuj)/q2-&Yi,. To close (2.1)-(2.5) we need expressions for third-order 
moments (02ut), (Outu,), ( E ~ u J  and for p, q5& $e and $. All the models except for 
q5!, are discussed in detail by Lumley (1978). Here we concentrate on q5& which is 
responsible for return to isotropy in the scalar flux equations. We can show that 
q5!, = 0 (i +j) and assume &, is an isotropic tensor; then &,(Ou,) may be written 
as q5e(Ou,), as most workers do. A number of workers choose different constant values 
of q5e in their particular flows. For example Zeman & Lumley (1979) chose $e = 7.5 
and Newman et al. (1981) chose q58 = 6.6. In general, q5e should not be a constant. 
Based on realizability, Lumley (1978) obtained a complicated tensor expression for 
q5$ which included the effects of timescale ratio, anisotropy, Reynolds number and 
correlation coefficient of O and ud. In this paper we develop a simpler (and more 
convincing) form for q5e, also based on realizability. We find that q5e also includes the 
effects of all quantities mentioned above. While the inclusion of the timescale ratio 
in Lumley (1978) was a formal deduction, here it is in addition a necessity made 
evident by the data. 

2.1. Model for q5@ 
In a homogeneous flow without mean velocity and mean-scalar gradients, the 
equations for scalar flux, variance and Reynolds stress are 

(02>, t = -2E,, 

(u.u.)  z j ,  = -@b , -%di j .  

Let us introduce a scalar F: 
F = 1 + 27111 + 911, 

(UiU ) 
q2 

where I1 = -Pf, b,,, 111 = &, b,, bki ,  b ,  = Rii-&,, R, = 2. 

Expression (2.9) is nine times the invariant expression introduced in Lumley (1978), 
where the factor of nine is introduced for numerical convenience. 

The normalized Reynolds-stress tensor has the following properties : 

R, = Rji ,  Rig = 1 ,  (2.10) 

and the eigenvalues of R, are non-negative. 
Using (2.10), F can be written as 

F = 9R:6 -4fRZ + t ,  
where Rti = R,  R,,, Rfi = R, Rjk Rki. 

(2.11) 
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(2.12) 
We can show that O G F G 1 .  

In fact, it  is straightforward to show that F is 27 times the product of the three 
eigenvalues of R, (the third principal invariant of Ri,), so that it will vanish if and 
only if one (or more) of these vanishes. An eigenvalue vanishes if, in non-principal 
axes, a component vanishes or Schwarz’s inequality becomes an equality. 

Using (2 .8)  and qft = -2e, we obtain 

(/3- 2)  (9111 + 211) € 

q2 
F t = -  (2.13) 

To satisfy realizability, and guarantee that F remain non-negative, we require that 
F t  vanish as F vanishes, i.e. 

Ft+O asF+O. (2.14) 

This is necessary, but not sufficient, to guarantee that F >  0; we should say 
something about higher derivatives. Since turbulence will remain two-dimensional 
until disturbed, we expect that 

F t  = F t t  = ...+ 0 as F+O. 

Since 9III+2II vanishes only if the turbulence is one-dimensional or isotropic, we 
assume 

/3= 2+GF, (2.15) 

where G is a function of invariants and other parameters. More general forms are 
possible, but do not appear to be necessary. This is the minimum sufficient to assure 
(2.14), and is consistent with the form given by Lumley (1978). Comparing with 
Lumley’s form, G should be 

G = exp [ - D / R i ]  (72/Re+ A In [ 1 +  B( -11 + CIII)]), (2.16) 

A =  80.1, B =  62.4, C =  2.3, D =  7.77. where 

Similarly to the above procedure, we introduce a normalized tensor D,, 

(2.17) 

which has the same properties as Rt,, i.e. 

D,, = D,t, D,, = 1 ,  (2.18) 

and the eigenvalues of D ,  are non-negative (see Lumley 1978). If we introduce a 
scalar FD, 

FD = 9Dt-?Db+%, (2.19) 

we shall be able to show that 
0 G FD < 1 .  (2.20) 

In fact, in the principal axes of D ,  

FD = 2701, Dzz D3.3, D,, + Dzz + D33 = 1 ,  (2.21) 

which follows from (2.19). Thus, FD is proportional to the third invariant of D,. 
Similarly to F,  non-negative FD will give a realizability condition that FD,t must 
vanish as FD vanishes, i.e. 

FD.t+O as FD+O. (2.22) 
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I n  addition, Lumley (1983) shows that F D  will not stay at the state of F D  = 0 when 
FD vanishes, unlike F .  So we must also require 

F D . t t  > 0 as F D + O .  (2.23) 

This can be only satisfied if F D , t  cc FA as F D + O .  The conditions (2.22) and (2.23) 
will guide us to find a form for $@. We have from (2.19) 

FD, t  = 27(Di j , tDjkDki-Di* , tDDi3) .  (2.24) 

Using (2.6)-(2.8), we can write 

(2.25) 

where d,, = (02) ( u p u p ) - ( e u p )  (eu,) ,  r = (q2 /e)ee / (e2) .  Substituting (2.25) into 
(2.24) gives 

+[$Db-D$-j](/9-2)}. (2.26) 

If we use (2.19) to express DZ in terms of F D  and D&, and require that the part not 
proportional to FD vanish proportional to 4, we obtain 

(2.27) 

H is an undetermined function of the timescale ratio r ,  invariants of D,, etc. This 
is the form of $O we are looking for, which will ensure that (2.22) and (2.23) are 
satisfied. As before, more complex forms of the final term in (2.27) are possible, but 
do not appear to  be necessary. In  the case of isotropic turbulence (bu = 0), the form 
of $* (2.27) becomes 

#e = 1 +r+H(FD)i .  (2.28) 

The function H has to  be determined by experiments. We find that good agreement 
withsirivat t Warhaft’s (1981) experiments (for different mean-temperaturegradients 
and different timescale ratios) is obtained by taking H = l . l r 2 .  

3. Flows with and without constant mean-temperature gradients 

temperature gradient are 
The equations for a homogeneous isotropic turbulence with constant mean- 

(3.1) 

f.ft = -2E, (3.2) 

a 8  
3x3 

( e y  + 2(ew> - = - 2€ 8 ,  

(3.5) 
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ae/ax (e2)exp -(ew>exp ~ w x p  (ez)cal - <ew)cal %a1 
("C/m) ("Cz) ("C m/s) ("Cz/s) ("Cz) ("C m/s) ("C2/s) 

10.3 0.01280 0.01101 0.09346 0.01280 0.01101 0.08500 
3.68 0.001 705 0.003981 0.011 20 0.001 705 0.003918 0.0105 
4.48 0.002287 0.003978 0.01492 0.002287 0.003978 0.01592 

(e2)exp, (ew),,,, eBexp -experimental results at x / M  = 40, (Bz),al, eBcal - initial 
conditions for calculations. 

TABLE 1. Initial conditions at x / M  = 40 for U = 3.4 m/s  

ae/ax <@)exp -(ew>exp (e2)ca1 - (ew)cal 
(oC/m) ( ~ 2 )  (T m/s) (~?;/s, (ocz) ("C m/s) ( 0 3 7 s )  

1.81 0.000447 1 0.0009456 0.001 240 0.000447 1 0.0009456 0.001 300 
8.1 0.009059 0.005551 0.02428 0.009059 0.004551 0.02500 
2.247 0.0009240 0.0009336 0.002091 0.0009240 0.0009336 0.001 580 
1.78 0.0004955 0.0006401 0.001 515 0.0004955 0.0006440 1 0.001 85 

t Values given at x / M  = 80. Notation as in table 1. 

TABLE 2. Initial conditions at x / M  = 40 for U = 6.3 m/s 

Initial conditions for (e2), q2, (Ow), €8 and E (tables 1 and 2)  are given by Sirivat 
& Warhaft's (1981) experiments for different mean-temperature gradients a 8 / a x 3 .  
(ew) (in the 2,-direction) is the only non-zero component of the heat flux. 

The models for de, lL.e and lL. are 

'0 = 2-- 2-'00+2.05(8w) r €0, $,, = y+0.98 exp[-2.83RE] ' = ' 0 0 .  

To normalize (3.1)-(3.5), we define 

where u,, 1, and T are the turbulent fluctuating velocity, length and temperature 
scales at the first measuring position. 
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The values of u,, 1, are determined from data a t  the first position x / M  = 40 where 
M is mesh size of the grid and x is downstream distance from the grid. Sirivat & 
Warhaft's (1981) data give the following relations: 

X t = -  3 d(w2) 
U '  

€ = - - -  u2 E 2 dt ' 

where E = 0.0468, a = - 1.24 for thc? case of U = 3.4 m/s (mean velocity) and 
E = 0.0622, a = - 1.29 for the case of U = 6.3 m/s, the mesh size M = 0.025 m; we 
can calculate ( w 2 )  and 1 at x / M  = 640 and choose u, = (w2)>:, 1, = 1 a t  x / M  = 40. 
I n  our calculations we chose T = (02): at x / M  = 40, and the values of u, and 1, 
are respectively 0.074701 m/s and 0.011071 m for the case of U = 3.4 m/s, and 
0.145515 m/s and 0.011937 m for U = 6.3 m/s. 

We carried out calculations for flows with different mean-temperature gradients 
a8/ax3. Three flows without mean-temperature gradients aQ/ax3 = a = 0, but with 
different timescale ratios were calculated. The calculations shown on figure 1 are in 
very good agreement with experimenbs. To see the influence of the timescale ratio 
on the calculations, we also plot the results with r = 1 in figure 1 .  Obviously, in the 
second and third plots the calculations with fixed r = 1 (dashed lines) deviate from 
experiment. This is because r = 1 underestimates the temperature dissipation rate eo, 
and hence causes the temperature intensity (e2) to decay too slowly. 

We also carried out calculations for seven flows with different constant mean- 
temperature gradients (aQ/ax, = a =+ 0).  The normalized temperature intensity 
(02)', heat flux (Ow)', temperature dissipation rate E;, and timescale ratio rare shown 
in figures 2-10. The dashed lines (which correspond to  r = 1 )  in the figures show the 
influence of the timescale ratio on the calculations. In  figure 11, we show the influence 
of the form of 4' on the calculations. If we choose q5e to  have a constant value of 4.8, 
the calculations in several cases (for example a = 1.81 "C/m) could fit the experimental 
data reasonably well but in other cases (say a = 1.78 "C/m) the calculations will fail 
(see figure 11) .  I n  figure 11 the calculations of heat flux (Ow)' (with model @ = 4.8) 
apparently deviate from experiments. Therefore there is no universal constant value 
of q5e for all flows: from a physical point of view, the return to isotropy (q5e(t?ui) E / q 2 )  

in the heat-flux equation should depend on the production mechanisms of the velocity 
and temperature fields. The timescale ratio r ,  as Newman et al. (1981) pointed out, 
depends on these production mechanisms and changes among flows with differing 
influences of the production mechanisms. Therefore must depend on the timescale 
ratio and must change its value from flow to flow. The form @ = 1 + r + H ( r )  Fh 
((2.28)) with H = l . l r 2  works very well in all the cases we have, as shown in figures 
2-10. 

4. Conclusion 
We have presented a model for the passive scalar flux equation. We have 

demonstrated two aspects of the influence of the timescale ratio on scalar flux 
relaxation. First, we must use the equation for eo to  calculate the real value of the 
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FIQURE 11. Comparing normalized heat flux with different forms 
for q5e in the heat-flux equation. 

timescale ratio T rather than estimating E@ directly through explicit specification of 
a constant value for the timescale ratio r = (q2 /e ) / ( (02 ) / e0 )  (most of the dashed lines 
in the figures deviate from experiment). Secondly, the q5e in the scalar flux equation 
must not be a universal constant and the form of q5e should include the effect of the 
timescale ratio. The results of our calculations compared with Sirivat & Warhaft 
(1981) show that our model can correctly estimate the behaviour of homogeneous 
scalar turbulence and could provide a basis for models describing more complex scalar 
flows. 
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